Uses of Class
org.ejml.data.FMatrixD1
Package
Description
-
Uses of FMatrixD1 in org.ejml.data
Modifier and TypeClassDescriptionclass
Interface for a row-major matrix that uses a single array internally.class
A row-major block matrix declared on to one continuous array.class
FMatrixRMaj is a row matrix with real elements that are 32-bit floats.Modifier and TypeMethodDescriptionvoid
Sets the value of this matrix to be the same as the value of the provided matrix.ModifierConstructorDescriptionFMatrixIterator
(FMatrixD1 a, boolean rowMajor, int minRow, int minCol, int maxRow, int maxCol) Creates a new iterator for traversing through a submatrix inside this matrix.FSubmatrixD1
(FMatrixD1 original) FSubmatrixD1
(FMatrixD1 original, int row0, int row1, int col0, int col1) -
Uses of FMatrixD1 in org.ejml.dense.row
Modifier and TypeMethodDescriptionstatic <T extends FMatrixD1>
TCommonOps_FDRM.add
(float alpha, T a, float beta, T b, T output) Performs the following operation:
c = α * a + β * b
cij = α * aij + β * bijstatic <T extends FMatrixD1>
TCommonOps_FDRM.add
(float alpha, T a, T b, T output) Performs the following operation:
c = α * a + b
cij = α * aij + bijstatic <T extends FMatrixD1>
TCommonOps_FDRM.add
(T a, float val, T output) Performs scalar addition:
c = a + val
cij = aij + valstatic <T extends FMatrixD1>
TCommonOps_FDRM.add
(T a, float beta, T b, T output) Performs the following operation:
c = a + β * b
cij = aij + β * bijstatic <T extends FMatrixD1>
TCommonOps_FDRM.add
(T a, T b, T output) Performs the following operation:
c = a + b
cij = aij + bijstatic <T extends FMatrixD1>
TCommonOps_FDRM.changeSign
(T input, T output) Changes the sign of every element in the matrix.
outputij = -inputijstatic <T extends FMatrixD1>
TCommonOps_FDRM.divide
(float alpha, T input, T output) Performs an element by element scalar division with the scalar on top.
bij = α/aijstatic <T extends FMatrixD1>
TCommonOps_FDRM.divide
(T input, float alpha, T output) Performs an element by element scalar division with the scalar on botton.
bij = aij /αstatic <T extends FMatrixD1>
TCommonOps_FDRM.elementDiv
(T A, T B, T output) Performs the an element by element division operation:
cij = aij / bijstatic <T extends FMatrixD1>
TCommonOps_FDRM.elementExp
(T A, T output) Element-wise exp operation
cij = (float)Math.exp(aij)static <T extends FMatrixD1>
TCommonOps_FDRM.elementLog
(T A, T output) Element-wise log operation
cij = (float)Math.log(aij)static <T extends FMatrixD1>
TCommonOps_FDRM.elementMult
(T A, T B, T output) Performs the an element by element multiplication operation:
cij = aij * bijstatic <T extends FMatrixD1>
TCommonOps_FDRM.elementPower
(float a, T B, T output) Element-wise power operation
cij = a ^ bijstatic <T extends FMatrixD1>
TCommonOps_FDRM.elementPower
(T A, float b, T output) Element-wise power operation
cij = aij ^ bstatic <T extends FMatrixD1>
TCommonOps_FDRM.elementPower
(T A, T B, T output) Element-wise power operation
cij = aij ^ bijstatic <T extends FMatrixD1>
TCommonOps_FDRM.subtract
(float val, T a, T output) Performs matrix scalar subtraction:
c = val - a
cij = val - aijstatic <T extends FMatrixD1>
TCommonOps_FDRM.subtract
(T a, float val, T output) Performs matrix scalar subtraction:
c = a - val
cij = aij - valstatic <T extends FMatrixD1>
TCommonOps_FDRM.subtract
(T a, T b, T output) Performs the following subtraction operation:
c = a - b
cij = aij - bijModifier and TypeMethodDescriptionstatic void
Performs absolute value of a matrix:
a = abs(a)
aij = abs(aij)static void
Performs absolute value of a matrix:
c = abs(a)
cij = abs(aij)static void
Performs an in-place scalar addition:
a = a + val
aij = aij + valstatic void
Performs the following operation:
a = a + β * b
aij = aij + β * bijstatic void
Performs the following operation:
a = a + b
aij = aij + bijstatic void
CommonOps_FDRM.changeSign
(FMatrixD1 a) Changes the sign of every element in the matrix.
aij = -aijstatic void
Converts the real matrix into a complex matrix.static float
Computes the F norm of the difference between the two Matrices:
Sqrt{∑i=1:m ∑j=1:n ( aij - bij)2}static float
SpecializedOps_FDRM.diffNormF_fast
(FMatrixD1 a, FMatrixD1 b) static float
SpecializedOps_FDRM.diffNormP1
(FMatrixD1 a, FMatrixD1 b) Computes the p=1 p-norm of the difference between the two Matrices:
∑i=1:m ∑j=1:n | aij - bij|
where |x| is the absolute value of x.static void
Performs an in-place element by element scalar division with the scalar on top.
aij = α/aijstatic void
Performs an in-place element by element scalar division with the scalar on bottom.
aij = aij/αstatic float
Computes the dot product or inner product between two vectors.static float
SpecializedOps_FDRM.elementDiagonalMaxAbs
(FMatrixD1 a) Returns the absolute value of the digonal element in the matrix that has the largest absolute value.
Max{ |aij| } for all i and jstatic void
CommonOps_FDRM.elementDiv
(FMatrixD1 A, FMatrixD1 B) Performs the an element by element division operation:
aij = aij / bijstatic float
CommonOps_FDRM.elementMax
(FMatrixD1 a) Returns the value of the element in the matrix that has the largest value.
Max{ aij } for all i and jstatic float
CommonOps_FDRM.elementMax
(FMatrixD1 a, ElementLocation loc) Returns the value of the element in the matrix that has the largest value.
Max{ aij } for all i and jstatic float
CommonOps_FDRM.elementMaxAbs
(FMatrixD1 a) Returns the absolute value of the element in the matrix that has the largest absolute value.
Max{ |aij| } for all i and jstatic float
CommonOps_FDRM.elementMaxAbs
(FMatrixD1 a, ElementLocation loc) Returns the absolute value of the element in the matrix that has the largest absolute value.
Max{ |aij| } for all i and jstatic float
CommonOps_FDRM.elementMin
(FMatrixD1 a) Returns the value of the element in the matrix that has the minimum value.
Min{ aij } for all i and jstatic float
CommonOps_FDRM.elementMin
(FMatrixD1 a, ElementLocation loc) Returns the value of the element in the matrix that has the minimum value.
Min{ aij } for all i and jstatic float
CommonOps_FDRM.elementMinAbs
(FMatrixD1 a) Returns the absolute value of the element in the matrix that has the smallest absolute value.
Min{ |aij| } for all i and jstatic float
CommonOps_FDRM.elementMinAbs
(FMatrixD1 a, ElementLocation loc) Returns the absolute value of the element in the matrix that has the smallest absolute value.
Min{ |aij| } for all i and jstatic void
CommonOps_FDRM.elementMult
(FMatrixD1 A, FMatrixD1 B) Performs the an element by element multiplication operation:
aij = aij * bijstatic float
CommonOps_FDRM.elementSum
(FMatrixD1 mat) Computes the sum of all the elements in the matrix:
sum(i=1:m , j=1:n ; aij)static float
CommonOps_FDRM.elementSumAbs
(FMatrixD1 mat) Computes the sum of the absolute value all the elements in the matrix:
sum(i=1:m , j=1:n ; |aij|)static float
SpecializedOps_FDRM.elementSumSq
(FMatrixD1 m) Sums up the square of each element in the matrix.static float
NormOps_FDRM.fastElementP
(FMatrixD1 A, float p) Same asNormOps_FDRM.elementP(org.ejml.data.FMatrix1Row, float)
but runs faster by not mitigating overflow/underflow related problems.static float
This implementation of the Frobenius norm is a straight forward implementation and can be susceptible for overflow/underflow issues.static void
Sets every element in the matrix to the specified value.
aij = valuestatic void
RandomMatrices_FDRM.fillGaussian
(FMatrixD1 mat, float mean, float stdev, Random rand) Sets each element in the matrix to a value drawn from an Gaussian distribution with the specified mean and standard deviationstatic void
RandomMatrices_FDRM.fillUniform
(FMatrixD1 mat, float min, float max, Random rand) Sets each element in the matrix to a value drawn from an uniform distribution from 'min' to 'max' inclusive.static boolean
Checks to see if any element in the matrix is NaN.static boolean
MatrixFeatures_FDRM.hasUncountable
(FMatrixD1 m) Checks to see if any element in the matrix is NaN of Infinite.static boolean
Checks to see if each element in the two matrices are equal: aij == bijstatic boolean
Checks to see if each element in the two matrices are within tolerance of each other: tol ≥ |aij - bij|.static boolean
MatrixFeatures_FDRM.isIdentical
(FMatrixD1 a, FMatrixD1 b, float tol) Checks to see if each corresponding element in the two matrices are within tolerance of each other or have the some symbolic meaning.static boolean
MatrixFeatures_FDRM.isNegative
(FMatrixD1 a, FMatrixD1 b, float tol) Checks to see if the two matrices are the negative of each other:
aij = -bijstatic boolean
Checks to see if it is a square matrix.static boolean
Checks to see all the elements in the matrix are zerosstatic float
Computes the Frobenius matrix norm:
normF = Sqrt{ ∑i=1:m ∑j=1:n { aij2} }static float
SpecializedOps_FDRM.qualityTriangular
(FMatrixD1 T) Computes the quality of a triangular matrix, where the quality of a matrix is defined inLinearSolver.quality()
.static void
FMatrixComponent.renderMatrix
(FMatrixD1 M, BufferedImage image, float maxValue) static void
Performs an in-place element by element scalar multiplication.
aij = α*aijstatic void
Performs an element by element scalar multiplication.
bij = α*aijvoid
static void
Creates a window visually showing the matrix's state.static void
CommonOps_FDRM.subtractEquals
(FMatrixD1 a, FMatrixD1 b) Performs the following subtraction operation:
a = a - b
aij = aij - bij -
Uses of FMatrixD1 in org.ejml.dense.row.misc
Modifier and TypeMethodDescriptionstatic <T extends FMatrixD1>
TImplCommonOps_FDRM.elementDiv
(T A, T B, T output) static <T extends FMatrixD1>
TImplCommonOps_FDRM.elementExp
(T A, T output) static <T extends FMatrixD1>
TImplCommonOps_FDRM.elementLog
(T A, T output) static <T extends FMatrixD1>
TImplCommonOps_FDRM.elementMult
(T A, T B, T output) static <T extends FMatrixD1>
TImplCommonOps_FDRM.elementPower
(float a, T B, T output) static <T extends FMatrixD1>
TImplCommonOps_FDRM.elementPower
(T A, float b, T output) static <T extends FMatrixD1>
TImplCommonOps_FDRM.elementPower
(T A, T B, T output) Modifier and TypeMethodDescriptionstatic void
ImplCommonOps_FDRM.elementDiv
(FMatrixD1 A, FMatrixD1 B) static float
ImplCommonOps_FDRM.elementMax
(FMatrixD1 a, @Nullable ElementLocation loc) static float
ImplCommonOps_FDRM.elementMaxAbs
(FMatrixD1 a, @Nullable ElementLocation loc) static float
ImplCommonOps_FDRM.elementMin
(FMatrixD1 a, @Nullable ElementLocation loc) static float
ImplCommonOps_FDRM.elementMinAbs
(FMatrixD1 a, @Nullable ElementLocation loc) static void
ImplCommonOps_FDRM.elementMult
(FMatrixD1 A, FMatrixD1 B) static float
ImplCommonOps_FDRM.elementSum
(FMatrixD1 mat) static float
ImplCommonOps_FDRM.elementSumAbs
(FMatrixD1 mat) -
Uses of FMatrixD1 in org.ejml.dense.row.mult
Modifier and TypeMethodDescriptionstatic void
VectorVectorMult_FDRM.addOuterProd
(float gamma, FMatrixD1 x, FMatrixD1 y, FMatrix1Row A) Adds to A ∈ ℜ m × n the results of an outer product multiplication of the two vectors.static void
VectorVectorMult_FDRM.householder
(float gamma, FMatrixD1 u, FMatrixD1 x, FMatrixD1 y) Multiplies a householder reflection against a vector:
y = (I + γ u uT)xstatic float
Computes the inner product of the two vectors.static float
VectorVectorMult_FDRM.innerProdA
(FMatrixD1 x, FMatrixD1 A, FMatrixD1 y) return = xT*A*ystatic float
VectorVectorMult_FDRM.innerProdTranA
(FMatrixD1 x, FMatrixD1 A, FMatrixD1 y) xTATystatic void
MatrixVectorMult_FDRM.mult
(FMatrix1Row A, FMatrixD1 B, FMatrixD1 C) Performs a matrix vector multiply.
c = A * b
and
c = A * bT
ci = Sum{ j=1:n, aij * bj}
where A is a matrix, b is a column or transposed row vector, and c is a column vector.static void
MatrixVectorMult_FDRM.multAdd
(FMatrix1Row A, FMatrixD1 B, FMatrixD1 C) Performs a matrix vector multiply.
C = C + A * B
or
C = C + A * BT
ci = Sum{ j=1:n, ci + aij * bj}
where A is a matrix, B is a column or transposed row vector, and C is a column vector.static void
MatrixVectorMult_FDRM.multAddTransA_reorder
(FMatrix1Row A, FMatrixD1 B, FMatrixD1 C) An alternative implementation ofMatrixVectorMult_FDRM.multAddTransA_small(org.ejml.data.FMatrix1Row, org.ejml.data.FMatrixD1, org.ejml.data.FMatrixD1)
that performs well on large matrices.static void
MatrixVectorMult_FDRM.multAddTransA_small
(FMatrix1Row A, FMatrixD1 B, FMatrixD1 C) Performs a matrix vector multiply.
C = C + AT * B
or
C = CT + AT * BT
ci = Sum{ j=1:n, ci + aji * bj}
where A is a matrix, B is a column or transposed row vector, and C is a column vector.static void
MatrixVectorMult_FDRM.multTransA_reorder
(FMatrix1Row A, FMatrixD1 B, FMatrixD1 C) An alternative implementation ofMatrixVectorMult_FDRM.multTransA_small(org.ejml.data.FMatrix1Row, org.ejml.data.FMatrixD1, org.ejml.data.FMatrixD1)
that performs well on large matrices.static void
MatrixVectorMult_FDRM.multTransA_small
(FMatrix1Row A, FMatrixD1 B, FMatrixD1 C) Performs a matrix vector multiply.
C = AT * B
where B is a column vector.
or
C = AT * BT
where B is a row vector.static void
VectorVectorMult_FDRM.outerProd
(FMatrixD1 x, FMatrixD1 y, FMatrix1Row A) Sets A ∈ ℜ m × n equal to an outer product multiplication of the two vectors. -
Uses of FMatrixD1 in org.ejml.masks