Example Principal Component Analysis
Jump to navigation
Jump to search
Principal Component Analysis (PCA) is a popular and simple to implement classification technique, often used in face recognition. The following is an example of how to implement it in EJML using the procedural interface. It is assumed that the reader is already familiar with PCA.
External Resources
Sample Code
/**
* <p>
* The following is a simple example of how to perform basic principal component analysis in EJML.
* </p>
*
* <p>
* Principal Component Analysis (PCA) is typically used to develop a linear model for a set of data
* (e.g. face images) which can then be used to test for membership. PCA works by converting the
* set of data to a new basis that is a subspace of the original set. The subspace is selected
* to maximize information.
* </p>
* <p>
* PCA is typically derived as an eigenvalue problem. However in this implementation {@link org.ejml.interfaces.decomposition.SingularValueDecomposition SVD}
* is used instead because it will produce a more numerically stable solution. Computation using EVD requires explicitly
* computing the variance of each sample set. The variance is computed by squaring the residual, which can
* cause loss of precision.
* </p>
*
* <p>
* Usage:<br>
* 1) call setup()<br>
* 2) For each sample (e.g. an image ) call addSample()<br>
* 3) After all the samples have been added call computeBasis()<br>
* 4) Call sampleToEigenSpace() , eigenToSampleSpace() , errorMembership() , response()
* </p>
*
* @author Peter Abeles
*/
public class PrincipalComponentAnalysis {
// principal component subspace is stored in the rows
private DMatrixRMaj V_t;
// how many principal components are used
private int numComponents;
// where the data is stored
private DMatrixRMaj A = new DMatrixRMaj(1, 1);
private int sampleIndex;
// mean values of each element across all the samples
double[] mean;
/**
* Must be called before any other functions. Declares and sets up internal data structures.
*
* @param numSamples Number of samples that will be processed.
* @param sampleSize Number of elements in each sample.
*/
public void setup( int numSamples, int sampleSize ) {
mean = new double[sampleSize];
A.reshape(numSamples, sampleSize, false);
sampleIndex = 0;
numComponents = -1;
}
/**
* Adds a new sample of the raw data to internal data structure for later processing. All the samples
* must be added before computeBasis is called.
*
* @param sampleData Sample from original raw data.
*/
public void addSample( double[] sampleData ) {
if (A.getNumCols() != sampleData.length)
throw new IllegalArgumentException("Unexpected sample size");
if (sampleIndex >= A.getNumRows())
throw new IllegalArgumentException("Too many samples");
for (int i = 0; i < sampleData.length; i++) {
A.set(sampleIndex, i, sampleData[i]);
}
sampleIndex++;
}
/**
* Computes a basis (the principal components) from the most dominant eigenvectors.
*
* @param numComponents Number of vectors it will use to describe the data. Typically much
* smaller than the number of elements in the input vector.
*/
public void computeBasis( int numComponents ) {
if (numComponents > A.getNumCols())
throw new IllegalArgumentException("More components requested that the data's length.");
if (sampleIndex != A.getNumRows())
throw new IllegalArgumentException("Not all the data has been added");
if (numComponents > sampleIndex)
throw new IllegalArgumentException("More data needed to compute the desired number of components");
this.numComponents = numComponents;
// compute the mean of all the samples
for (int i = 0; i < A.getNumRows(); i++) {
for (int j = 0; j < mean.length; j++) {
mean[j] += A.get(i, j);
}
}
for (int j = 0; j < mean.length; j++) {
mean[j] /= A.getNumRows();
}
// subtract the mean from the original data
for (int i = 0; i < A.getNumRows(); i++) {
for (int j = 0; j < mean.length; j++) {
A.set(i, j, A.get(i, j) - mean[j]);
}
}
// Compute SVD and save time by not computing U
SingularValueDecomposition<DMatrixRMaj> svd =
DecompositionFactory_DDRM.svd(A.numRows, A.numCols, false, true, false);
if (!svd.decompose(A))
throw new RuntimeException("SVD failed");
V_t = svd.getV(null, true);
DMatrixRMaj W = svd.getW(null);
// Singular values are in an arbitrary order initially
SingularOps_DDRM.descendingOrder(null, false, W, V_t, true);
// strip off unneeded components and find the basis
V_t.reshape(numComponents, mean.length, true);
}
/**
* Returns a vector from the PCA's basis.
*
* @param which Which component's vector is to be returned.
* @return Vector from the PCA basis.
*/
public double[] getBasisVector( int which ) {
if (which < 0 || which >= numComponents)
throw new IllegalArgumentException("Invalid component");
DMatrixRMaj v = new DMatrixRMaj(1, A.numCols);
CommonOps_DDRM.extract(V_t, which, which + 1, 0, A.numCols, v, 0, 0);
return v.data;
}
/**
* Converts a vector from sample space into eigen space.
*
* @param sampleData Sample space data.
* @return Eigen space projection.
*/
public double[] sampleToEigenSpace( double[] sampleData ) {
if (sampleData.length != A.getNumCols())
throw new IllegalArgumentException("Unexpected sample length");
DMatrixRMaj mean = DMatrixRMaj.wrap(A.getNumCols(), 1, this.mean);
DMatrixRMaj s = new DMatrixRMaj(A.getNumCols(), 1, true, sampleData);
DMatrixRMaj r = new DMatrixRMaj(numComponents, 1);
CommonOps_DDRM.subtract(s, mean, s);
CommonOps_DDRM.mult(V_t, s, r);
return r.data;
}
/**
* Converts a vector from eigen space into sample space.
*
* @param eigenData Eigen space data.
* @return Sample space projection.
*/
public double[] eigenToSampleSpace( double[] eigenData ) {
if (eigenData.length != numComponents)
throw new IllegalArgumentException("Unexpected sample length");
DMatrixRMaj s = new DMatrixRMaj(A.getNumCols(), 1);
DMatrixRMaj r = DMatrixRMaj.wrap(numComponents, 1, eigenData);
CommonOps_DDRM.multTransA(V_t, r, s);
DMatrixRMaj mean = DMatrixRMaj.wrap(A.getNumCols(), 1, this.mean);
CommonOps_DDRM.add(s, mean, s);
return s.data;
}
/**
* <p>
* The membership error for a sample. If the error is less than a threshold then
* it can be considered a member. The threshold's value depends on the data set.
* </p>
* <p>
* The error is computed by projecting the sample into eigenspace then projecting
* it back into sample space and
* </p>
*
* @param sampleA The sample whose membership status is being considered.
* @return Its membership error.
*/
public double errorMembership( double[] sampleA ) {
double[] eig = sampleToEigenSpace(sampleA);
double[] reproj = eigenToSampleSpace(eig);
double total = 0;
for (int i = 0; i < reproj.length; i++) {
double d = sampleA[i] - reproj[i];
total += d*d;
}
return Math.sqrt(total);
}
/**
* Computes the dot product of each basis vector against the sample. Can be used as a measure
* for membership in the training sample set. High values correspond to a better fit.
*
* @param sample Sample of original data.
* @return Higher value indicates it is more likely to be a member of input dataset.
*/
public double response( double[] sample ) {
if (sample.length != A.numCols)
throw new IllegalArgumentException("Expected input vector to be in sample space");
DMatrixRMaj dots = new DMatrixRMaj(numComponents, 1);
DMatrixRMaj s = DMatrixRMaj.wrap(A.numCols, 1, sample);
CommonOps_DDRM.mult(V_t, s, dots);
return NormOps_DDRM.normF(dots);
}
}