Class SymmetricQrAlgorithm_DDRM

java.lang.Object
org.ejml.dense.row.decomposition.eig.symm.SymmetricQrAlgorithm_DDRM

public class SymmetricQrAlgorithm_DDRM extends Object

Computes the eigenvalues and eigenvectors of a symmetric tridiagonal matrix using the symmetric QR algorithm.

This implementation is based on the algorithm is sketched out in:
David S. Watkins, "Fundamentals of Matrix Computations," Second Edition. page 377-385

  • Constructor Details

    • SymmetricQrAlgorithm_DDRM

      public SymmetricQrAlgorithm_DDRM(SymmetricQREigenHelper_DDRM helper)
    • SymmetricQrAlgorithm_DDRM

      public SymmetricQrAlgorithm_DDRM()
      Creates a new SymmetricQREigenvalue class that declares its own SymmetricQREigenHelper.
  • Method Details

    • setMaxIterations

      public void setMaxIterations(int maxIterations)
    • getQ

      @Nullable public @Nullable DMatrixRMaj getQ()
    • setQ

      public void setQ(@Nullable @Nullable DMatrixRMaj q)
    • setFastEigenvalues

      public void setFastEigenvalues(boolean fastEigenvalues)
    • getEigenvalue

      public double getEigenvalue(int index)
      Returns the eigenvalue at the specified index.
      Parameters:
      index - Which eigenvalue.
      Returns:
      The eigenvalue.
    • getNumberOfEigenvalues

      public int getNumberOfEigenvalues()
      Returns the number of eigenvalues available.
      Returns:
      How many eigenvalues there are.
    • process

      public boolean process(int sideLength, @Nullable @org.jetbrains.annotations.Nullable double[] diag, @Nullable @org.jetbrains.annotations.Nullable double[] off, double[] eigenvalues)
      Computes the eigenvalue of the provided tridiagonal matrix. Note that only the upper portion needs to be tridiagonal. The bottom diagonal is assumed to be the same as the top.
      Parameters:
      sideLength - Number of rows and columns in the input matrix.
      diag - Diagonal elements from tridiagonal matrix. Modified.
      off - Off diagonal elements from tridiagonal matrix. Modified.
      Returns:
      true if it succeeds and false if it fails.
    • process

      public boolean process(int sideLength, @Nullable @org.jetbrains.annotations.Nullable double[] diag, @Nullable @org.jetbrains.annotations.Nullable double[] off)
    • performStep

      public void performStep()
      First looks for zeros and then performs the implicit single step in the QR Algorithm.