Class SymmetricQrAlgorithm_DDRM
java.lang.Object
org.ejml.dense.row.decomposition.eig.symm.SymmetricQrAlgorithm_DDRM
Computes the eigenvalues and eigenvectors of a symmetric tridiagonal matrix using the symmetric QR algorithm.
This implementation is based on the algorithm is sketched out in:
David S. Watkins, "Fundamentals of Matrix Computations," Second Edition. page 377-385
-
Constructor Summary
ConstructorsConstructorDescriptionCreates a new SymmetricQREigenvalue class that declares its own SymmetricQREigenHelper. -
Method Summary
Modifier and TypeMethodDescriptiondoublegetEigenvalue(int index) Returns the eigenvalue at the specified index.intReturns the number of eigenvalues available.@Nullable DMatrixRMajgetQ()voidFirst looks for zeros and then performs the implicit single step in the QR Algorithm.booleanprocess(int sideLength, @org.jetbrains.annotations.Nullable double[] diag, @org.jetbrains.annotations.Nullable double[] off) booleanprocess(int sideLength, @org.jetbrains.annotations.Nullable double[] diag, @org.jetbrains.annotations.Nullable double[] off, double[] eigenvalues) Computes the eigenvalue of the provided tridiagonal matrix.voidsetFastEigenvalues(boolean fastEigenvalues) voidsetMaxIterations(int maxIterations) voidsetQ(@Nullable DMatrixRMaj q)
-
Constructor Details
-
SymmetricQrAlgorithm_DDRM
-
SymmetricQrAlgorithm_DDRM
public SymmetricQrAlgorithm_DDRM()Creates a new SymmetricQREigenvalue class that declares its own SymmetricQREigenHelper.
-
-
Method Details
-
setMaxIterations
public void setMaxIterations(int maxIterations) -
getQ
-
setQ
-
setFastEigenvalues
public void setFastEigenvalues(boolean fastEigenvalues) -
getEigenvalue
public double getEigenvalue(int index) Returns the eigenvalue at the specified index.- Parameters:
index- Which eigenvalue.- Returns:
- The eigenvalue.
-
getNumberOfEigenvalues
public int getNumberOfEigenvalues()Returns the number of eigenvalues available.- Returns:
- How many eigenvalues there are.
-
process
public boolean process(int sideLength, @Nullable @org.jetbrains.annotations.Nullable double[] diag, @Nullable @org.jetbrains.annotations.Nullable double[] off, double[] eigenvalues) Computes the eigenvalue of the provided tridiagonal matrix. Note that only the upper portion needs to be tridiagonal. The bottom diagonal is assumed to be the same as the top.- Parameters:
sideLength- Number of rows and columns in the input matrix.diag- Diagonal elements from tridiagonal matrix. Modified.off- Off diagonal elements from tridiagonal matrix. Modified.- Returns:
- true if it succeeds and false if it fails.
-
process
public boolean process(int sideLength, @Nullable @org.jetbrains.annotations.Nullable double[] diag, @Nullable @org.jetbrains.annotations.Nullable double[] off) -
performStep
public void performStep()First looks for zeros and then performs the implicit single step in the QR Algorithm.
-