Difference between revisions of "Example Kalman Filter"

From Efficient Java Matrix Library
Jump to navigation Jump to search
(10 intermediate revisions by the same user not shown)
Line 1: Line 1:
  
Here are three examples that demonstrate how a [http://en.wikipedia.org/wiki/Kalman_filter Kalman filter]] can be created using different API's in EJML.  Each API has different advantages and disadvantages.  High level interfaces tend to be easier to use, but sacrifice efficiency.  The intent of this article is to illustrate this trend empirically.  Runtime performance of each approach is shown below.  To see how complex and readable each approach is check out the source code below.
+
Here are three examples that demonstrate how a [http://en.wikipedia.org/wiki/Kalman_filter Kalman filter] can be created using different API's in EJML.  Each API has different advantages and disadvantages.  High level interfaces tend to be easier to use, but sacrifice efficiency.  The intent of this article is to illustrate this trend empirically.  Runtime performance of each approach is shown below.  To see how complex and readable each approach is check out the source code below.
  
 
<center>
 
<center>
Line 8: Line 8:
 
| SimpleMatrix || 1875
 
| SimpleMatrix || 1875
 
|-
 
|-
| Procedural || 1280
+
| Operations || 1280
 
|-
 
|-
 
| Equations || 1698  
 
| Equations || 1698  
Line 14: Line 14:
 
</center>
 
</center>
  
Code on GitHub:
+
__TOC__
* [https://github.com/lessthanoptimal/ejml/blob/master/examples/src/org/ejml/example/KalmanFilterSimple.java KalmanFilterSimple]
+
 
* [https://github.com/lessthanoptimal/ejml/blob/master/examples/src/org/ejml/example/KalmanFilterEquation.java KalmanFilterEquation]
+
 
* [https://github.com/lessthanoptimal/ejml/blob/master/examples/src/org/ejml/example/KalmanFilterSimple.java KalmanFilterSimple]
+
External Resources:
 +
* [https://github.com/lessthanoptimal/ejml/blob/v0.31/examples/src/org/ejml/example/KalmanFilterSimple.java KalmanFilterSimple]
 +
* [https://github.com/lessthanoptimal/ejml/blob/v0.31/examples/src/org/ejml/example/KalmanFilterOperations.java KalmanFilterOperations]
 +
* [https://github.com/lessthanoptimal/ejml/blob/v0.31/examples/src/org/ejml/example/KalmanFilterEquation.java KalmanFilterEquation]
 +
* <disqus>Discuss this example</disqus>
 +
 
 +
----
  
 
'''NOTE:''' While the Kalman filter code below is fully functional and will work well in most applications, it might not be the best.  Other variants seek to improve stability and/or avoid the matrix inversion.  It's worth point out that some people say you should never invert the matrix in a Kalman filter.  There are applications, such as target tracking, where matrix inversion of the innovation covariance is helpful as a preprocessing step.
 
'''NOTE:''' While the Kalman filter code below is fully functional and will work well in most applications, it might not be the best.  Other variants seek to improve stability and/or avoid the matrix inversion.  It's worth point out that some people say you should never invert the matrix in a Kalman filter.  There are applications, such as target tracking, where matrix inversion of the innovation covariance is helpful as a preprocessing step.
Line 28: Line 34:
 
  * read and write, but the performance is degraded due to excessive creation/destruction of
 
  * read and write, but the performance is degraded due to excessive creation/destruction of
 
  * memory and the use of more generic algorithms.  This also demonstrates how code can be
 
  * memory and the use of more generic algorithms.  This also demonstrates how code can be
  * seamlessly implemented using both SimpleMatrix and DenseMatrix64F.  This allows code
+
  * seamlessly implemented using both SimpleMatrix and DMatrixRMaj.  This allows code
 
  * to be quickly prototyped or to be written either by novices or experts.
 
  * to be quickly prototyped or to be written either by novices or experts.
 
  *
 
  *
Line 36: Line 42:
  
 
     // kinematics description
 
     // kinematics description
     private SimpleMatrix F;
+
     private SimpleMatrix F,Q,H;
    private SimpleMatrix Q;
 
    private SimpleMatrix H;
 
  
 
     // sytem state estimate
 
     // sytem state estimate
     private SimpleMatrix x;
+
     private SimpleMatrix x,P;
    private SimpleMatrix P;
 
 
 
  
 
     @Override
 
     @Override
     public void configure(DenseMatrix64F F, DenseMatrix64F Q, DenseMatrix64F H) {
+
     public void configure(DMatrixRMaj F, DMatrixRMaj Q, DMatrixRMaj H) {
 
         this.F = new SimpleMatrix(F);
 
         this.F = new SimpleMatrix(F);
 
         this.Q = new SimpleMatrix(Q);
 
         this.Q = new SimpleMatrix(Q);
Line 53: Line 55:
  
 
     @Override
 
     @Override
     public void setState(DenseMatrix64F x, DenseMatrix64F P) {
+
     public void setState(DMatrixRMaj x, DMatrixRMaj P) {
 
         this.x = new SimpleMatrix(x);
 
         this.x = new SimpleMatrix(x);
 
         this.P = new SimpleMatrix(P);
 
         this.P = new SimpleMatrix(P);
Line 68: Line 70:
  
 
     @Override
 
     @Override
     public void update(DenseMatrix64F _z, DenseMatrix64F _R) {
+
     public void update(DMatrixRMaj _z, DMatrixRMaj _R) {
 
         // a fast way to make the matrices usable by SimpleMatrix
 
         // a fast way to make the matrices usable by SimpleMatrix
 
         SimpleMatrix z = SimpleMatrix.wrap(_z);
 
         SimpleMatrix z = SimpleMatrix.wrap(_z);
Line 90: Line 92:
  
 
     @Override
 
     @Override
     public DenseMatrix64F getState() {
+
     public DMatrixRMaj getState() {
 
         return x.getMatrix();
 
         return x.getMatrix();
 
     }
 
     }
  
 
     @Override
 
     @Override
     public DenseMatrix64F getCovariance() {
+
     public DMatrixRMaj getCovariance() {
 
         return P.getMatrix();
 
         return P.getMatrix();
 
     }
 
     }
Line 101: Line 103:
 
</syntaxhighlight>
 
</syntaxhighlight>
  
== Procedural Example ==
+
== Operations Example ==
  
 
<syntaxhighlight lang="java">
 
<syntaxhighlight lang="java">
 
/**
 
/**
 
  * A Kalman filter that is implemented using the operations API, which is procedural.  Much of the excessive
 
  * A Kalman filter that is implemented using the operations API, which is procedural.  Much of the excessive
  * memory creation/destruction has been reduced from the KalmanFilterSimple. A specialized solver is  
+
  * memory creation/destruction has been reduced from the KalmanFilterSimple. A specialized solver is
  * under to invert the SPD matrix.
+
  * under to invert the SPD matrix.
  *  
+
  *
 
  * @author Peter Abeles
 
  * @author Peter Abeles
 
  */
 
  */
Line 114: Line 116:
  
 
     // kinematics description
 
     // kinematics description
     private DenseMatrix64F F;
+
     private DMatrixRMaj F,Q,H;
    private DenseMatrix64F Q;
 
    private DenseMatrix64F H;
 
  
 
     // system state estimate
 
     // system state estimate
     private DenseMatrix64F x;
+
     private DMatrixRMaj x,P;
    private DenseMatrix64F P;
 
  
 
     // these are predeclared for efficiency reasons
 
     // these are predeclared for efficiency reasons
     private DenseMatrix64F a,b;
+
     private DMatrixRMaj a,b;
     private DenseMatrix64F y,S,S_inv,c,d;
+
     private DMatrixRMaj y,S,S_inv,c,d;
     private DenseMatrix64F K;
+
     private DMatrixRMaj K;
  
     private LinearSolver<DenseMatrix64F> solver;
+
     private LinearSolver<DMatrixRMaj> solver;
  
 
     @Override
 
     @Override
     public void configure(DenseMatrix64F F, DenseMatrix64F Q, DenseMatrix64F H) {
+
     public void configure(DMatrixRMaj F, DMatrixRMaj Q, DMatrixRMaj H) {
 
         this.F = F;
 
         this.F = F;
 
         this.Q = Q;
 
         this.Q = Q;
Line 138: Line 137:
 
         int dimenZ = H.numRows;
 
         int dimenZ = H.numRows;
  
         a = new DenseMatrix64F(dimenX,1);
+
         a = new DMatrixRMaj(dimenX,1);
         b = new DenseMatrix64F(dimenX,dimenX);
+
         b = new DMatrixRMaj(dimenX,dimenX);
         y = new DenseMatrix64F(dimenZ,1);
+
         y = new DMatrixRMaj(dimenZ,1);
         S = new DenseMatrix64F(dimenZ,dimenZ);
+
         S = new DMatrixRMaj(dimenZ,dimenZ);
         S_inv = new DenseMatrix64F(dimenZ,dimenZ);
+
         S_inv = new DMatrixRMaj(dimenZ,dimenZ);
         c = new DenseMatrix64F(dimenZ,dimenX);
+
         c = new DMatrixRMaj(dimenZ,dimenX);
         d = new DenseMatrix64F(dimenX,dimenZ);
+
         d = new DMatrixRMaj(dimenX,dimenZ);
         K = new DenseMatrix64F(dimenX,dimenZ);
+
         K = new DMatrixRMaj(dimenX,dimenZ);
  
         x = new DenseMatrix64F(dimenX,1);
+
         x = new DMatrixRMaj(dimenX,1);
         P = new DenseMatrix64F(dimenX,dimenX);
+
         P = new DMatrixRMaj(dimenX,dimenX);
  
 
         // covariance matrices are symmetric positive semi-definite
 
         // covariance matrices are symmetric positive semi-definite
         solver = LinearSolverFactory.symmPosDef(dimenX);
+
         solver = LinearSolverFactory_DDRM.symmPosDef(dimenX);
 
     }
 
     }
  
 
     @Override
 
     @Override
     public void setState(DenseMatrix64F x, DenseMatrix64F P) {
+
     public void setState(DMatrixRMaj x, DMatrixRMaj P) {
 
         this.x.set(x);
 
         this.x.set(x);
 
         this.P.set(P);
 
         this.P.set(P);
Line 174: Line 173:
  
 
     @Override
 
     @Override
     public void update(DenseMatrix64F z, DenseMatrix64F R) {
+
     public void update(DMatrixRMaj z, DMatrixRMaj R) {
 
         // y = z - H x
 
         // y = z - H x
 
         mult(H,x,y);
 
         mult(H,x,y);
Line 201: Line 200:
  
 
     @Override
 
     @Override
     public DenseMatrix64F getState() {
+
     public DMatrixRMaj getState() {
 
         return x;
 
         return x;
 
     }
 
     }
  
 
     @Override
 
     @Override
     public DenseMatrix64F getCovariance() {
+
     public DMatrixRMaj getCovariance() {
 
         return P;
 
         return P;
 
     }
 
     }
Line 223: Line 222:
  
 
     // system state estimate
 
     // system state estimate
     private DenseMatrix64F x;
+
     private DMatrixRMaj x,P;
    private DenseMatrix64F P;
 
  
 
     private Equation eq;
 
     private Equation eq;
Line 233: Line 231:
  
 
     @Override
 
     @Override
     public void configure(DenseMatrix64F F, DenseMatrix64F Q, DenseMatrix64F H) {
+
     public void configure(DMatrixRMaj F, DMatrixRMaj Q, DMatrixRMaj H) {
 
         int dimenX = F.numCols;
 
         int dimenX = F.numCols;
  
         x = new DenseMatrix64F(dimenX,1);
+
         x = new DMatrixRMaj(dimenX,1);
         P = new DenseMatrix64F(dimenX,dimenX);
+
         P = new DMatrixRMaj(dimenX,dimenX);
  
 
         eq = new Equation();
 
         eq = new Equation();
Line 246: Line 244:
  
 
         // Dummy matrix place holder to avoid compiler errors.  Will be replaced later on
 
         // Dummy matrix place holder to avoid compiler errors.  Will be replaced later on
         eq.alias(new DenseMatrix64F(1,1),"z");
+
         eq.alias(new DMatrixRMaj(1,1),"z");
         eq.alias(new DenseMatrix64F(1,1),"R");
+
         eq.alias(new DMatrixRMaj(1,1),"R");
  
 
         // Pre-compile so that it doesn't have to compile it each time it's invoked.  More cumbersome
 
         // Pre-compile so that it doesn't have to compile it each time it's invoked.  More cumbersome
Line 261: Line 259:
  
 
     @Override
 
     @Override
     public void setState(DenseMatrix64F x, DenseMatrix64F P) {
+
     public void setState(DMatrixRMaj x, DMatrixRMaj P) {
 
         this.x.set(x);
 
         this.x.set(x);
 
         this.P.set(P);
 
         this.P.set(P);
Line 273: Line 271:
  
 
     @Override
 
     @Override
     public void update(DenseMatrix64F z, DenseMatrix64F R) {
+
     public void update(DMatrixRMaj z, DMatrixRMaj R) {
  
 
         // Alias will overwrite the reference to the previous matrices with the same name
 
         // Alias will overwrite the reference to the previous matrices with the same name
Line 285: Line 283:
  
 
     @Override
 
     @Override
     public DenseMatrix64F getState() {
+
     public DMatrixRMaj getState() {
 
         return x;
 
         return x;
 
     }
 
     }
  
 
     @Override
 
     @Override
     public DenseMatrix64F getCovariance() {
+
     public DMatrixRMaj getCovariance() {
 
         return P;
 
         return P;
 
     }
 
     }
 
}
 
}
 
</syntaxhighlight>
 
</syntaxhighlight>

Revision as of 12:37, 18 May 2017

Here are three examples that demonstrate how a Kalman filter can be created using different API's in EJML. Each API has different advantages and disadvantages. High level interfaces tend to be easier to use, but sacrifice efficiency. The intent of this article is to illustrate this trend empirically. Runtime performance of each approach is shown below. To see how complex and readable each approach is check out the source code below.

API Execution Time (ms)
SimpleMatrix 1875
Operations 1280
Equations 1698


External Resources:


NOTE: While the Kalman filter code below is fully functional and will work well in most applications, it might not be the best. Other variants seek to improve stability and/or avoid the matrix inversion. It's worth point out that some people say you should never invert the matrix in a Kalman filter. There are applications, such as target tracking, where matrix inversion of the innovation covariance is helpful as a preprocessing step.

SimpleMatrix Example

/**
 * A Kalman filter implemented using SimpleMatrix.  The code tends to be easier to
 * read and write, but the performance is degraded due to excessive creation/destruction of
 * memory and the use of more generic algorithms.  This also demonstrates how code can be
 * seamlessly implemented using both SimpleMatrix and DMatrixRMaj.  This allows code
 * to be quickly prototyped or to be written either by novices or experts.
 *
 * @author Peter Abeles
 */
public class KalmanFilterSimple implements KalmanFilter{

    // kinematics description
    private SimpleMatrix F,Q,H;

    // sytem state estimate
    private SimpleMatrix x,P;

    @Override
    public void configure(DMatrixRMaj F, DMatrixRMaj Q, DMatrixRMaj H) {
        this.F = new SimpleMatrix(F);
        this.Q = new SimpleMatrix(Q);
        this.H = new SimpleMatrix(H);
    }

    @Override
    public void setState(DMatrixRMaj x, DMatrixRMaj P) {
        this.x = new SimpleMatrix(x);
        this.P = new SimpleMatrix(P);
    }

    @Override
    public void predict() {
        // x = F x
        x = F.mult(x);

        // P = F P F' + Q
        P = F.mult(P).mult(F.transpose()).plus(Q);
    }

    @Override
    public void update(DMatrixRMaj _z, DMatrixRMaj _R) {
        // a fast way to make the matrices usable by SimpleMatrix
        SimpleMatrix z = SimpleMatrix.wrap(_z);
        SimpleMatrix R = SimpleMatrix.wrap(_R);

        // y = z - H x
        SimpleMatrix y = z.minus(H.mult(x));

        // S = H P H' + R
        SimpleMatrix S = H.mult(P).mult(H.transpose()).plus(R);

        // K = PH'S^(-1)
        SimpleMatrix K = P.mult(H.transpose().mult(S.invert()));

        // x = x + Ky
        x = x.plus(K.mult(y));

        // P = (I-kH)P = P - KHP
        P = P.minus(K.mult(H).mult(P));
    }

    @Override
    public DMatrixRMaj getState() {
        return x.getMatrix();
    }

    @Override
    public DMatrixRMaj getCovariance() {
        return P.getMatrix();
    }
}

Operations Example

/**
 * A Kalman filter that is implemented using the operations API, which is procedural.  Much of the excessive
 * memory creation/destruction has been reduced from the KalmanFilterSimple. A specialized solver is
 * under to invert the SPD matrix.
 *
 * @author Peter Abeles
 */
public class KalmanFilterOperations implements KalmanFilter{

    // kinematics description
    private DMatrixRMaj F,Q,H;

    // system state estimate
    private DMatrixRMaj x,P;

    // these are predeclared for efficiency reasons
    private DMatrixRMaj a,b;
    private DMatrixRMaj y,S,S_inv,c,d;
    private DMatrixRMaj K;

    private LinearSolver<DMatrixRMaj> solver;

    @Override
    public void configure(DMatrixRMaj F, DMatrixRMaj Q, DMatrixRMaj H) {
        this.F = F;
        this.Q = Q;
        this.H = H;

        int dimenX = F.numCols;
        int dimenZ = H.numRows;

        a = new DMatrixRMaj(dimenX,1);
        b = new DMatrixRMaj(dimenX,dimenX);
        y = new DMatrixRMaj(dimenZ,1);
        S = new DMatrixRMaj(dimenZ,dimenZ);
        S_inv = new DMatrixRMaj(dimenZ,dimenZ);
        c = new DMatrixRMaj(dimenZ,dimenX);
        d = new DMatrixRMaj(dimenX,dimenZ);
        K = new DMatrixRMaj(dimenX,dimenZ);

        x = new DMatrixRMaj(dimenX,1);
        P = new DMatrixRMaj(dimenX,dimenX);

        // covariance matrices are symmetric positive semi-definite
        solver = LinearSolverFactory_DDRM.symmPosDef(dimenX);
    }

    @Override
    public void setState(DMatrixRMaj x, DMatrixRMaj P) {
        this.x.set(x);
        this.P.set(P);
    }

    @Override
    public void predict() {

        // x = F x
        mult(F,x,a);
        x.set(a);

        // P = F P F' + Q
        mult(F,P,b);
        multTransB(b,F, P);
        addEquals(P,Q);
    }

    @Override
    public void update(DMatrixRMaj z, DMatrixRMaj R) {
        // y = z - H x
        mult(H,x,y);
        subtract(z, y, y);

        // S = H P H' + R
        mult(H,P,c);
        multTransB(c,H,S);
        addEquals(S,R);

        // K = PH'S^(-1)
        if( !solver.setA(S) ) throw new RuntimeException("Invert failed");
        solver.invert(S_inv);
        multTransA(H,S_inv,d);
        mult(P,d,K);

        // x = x + Ky
        mult(K,y,a);
        addEquals(x,a);

        // P = (I-kH)P = P - (KH)P = P-K(HP)
        mult(H,P,c);
        mult(K,c,b);
        subtractEquals(P, b);
    }

    @Override
    public DMatrixRMaj getState() {
        return x;
    }

    @Override
    public DMatrixRMaj getCovariance() {
        return P;
    }
}

Equations Example

/**
 * Example of how the equation interface can greatly simplify code
 *
 * @author Peter Abeles
 */
public class KalmanFilterEquation implements KalmanFilter{

    // system state estimate
    private DMatrixRMaj x,P;

    private Equation eq;

    // Storage for precompiled code for predict and update
    Sequence predictX,predictP;
    Sequence updateY,updateK,updateX,updateP;

    @Override
    public void configure(DMatrixRMaj F, DMatrixRMaj Q, DMatrixRMaj H) {
        int dimenX = F.numCols;

        x = new DMatrixRMaj(dimenX,1);
        P = new DMatrixRMaj(dimenX,dimenX);

        eq = new Equation();

        // Provide aliases between the symbolic variables and matrices we normally interact with
        // The names do not have to be the same.
        eq.alias(x,"x",P,"P",Q,"Q",F,"F",H,"H");

        // Dummy matrix place holder to avoid compiler errors.  Will be replaced later on
        eq.alias(new DMatrixRMaj(1,1),"z");
        eq.alias(new DMatrixRMaj(1,1),"R");

        // Pre-compile so that it doesn't have to compile it each time it's invoked.  More cumbersome
        // but for small matrices the overhead is significant
        predictX = eq.compile("x = F*x");
        predictP = eq.compile("P = F*P*F' + Q");

        updateY = eq.compile("y = z - H*x");
        updateK = eq.compile("K = P*H'*inv( H*P*H' + R )");
        updateX = eq.compile("x = x + K*y");
        updateP = eq.compile("P = P-K*(H*P)");
    }

    @Override
    public void setState(DMatrixRMaj x, DMatrixRMaj P) {
        this.x.set(x);
        this.P.set(P);
    }

    @Override
    public void predict() {
        predictX.perform();
        predictP.perform();
    }

    @Override
    public void update(DMatrixRMaj z, DMatrixRMaj R) {

        // Alias will overwrite the reference to the previous matrices with the same name
        eq.alias(z,"z"); eq.alias(R,"R");

        updateY.perform();
        updateK.perform();
        updateX.perform();
        updateP.perform();
    }

    @Override
    public DMatrixRMaj getState() {
        return x;
    }

    @Override
    public DMatrixRMaj getCovariance() {
        return P;
    }
}