Uses of Class
org.ejml.data.FMatrixD1
Packages that use FMatrixD1
Package
Description
-
Uses of FMatrixD1 in org.ejml.data
Subclasses of FMatrixD1 in org.ejml.dataModifier and TypeClassDescriptionclassInterface for a row-major matrix that uses a single array internally.classA row-major block matrix declared on to one continuous array.classFMatrixRMaj is a row matrix with real elements that are 32-bit floats.Methods in org.ejml.data with parameters of type FMatrixD1Modifier and TypeMethodDescriptionvoidSets the value of this matrix to be the same as the value of the provided matrix.Constructors in org.ejml.data with parameters of type FMatrixD1ModifierConstructorDescriptionFMatrixIterator(FMatrixD1 a, boolean rowMajor, int minRow, int minCol, int maxRow, int maxCol) Creates a new iterator for traversing through a submatrix inside this matrix.FSubmatrixD1(FMatrixD1 original) FSubmatrixD1(FMatrixD1 original, int row0, int row1, int col0, int col1) -
Uses of FMatrixD1 in org.ejml.dense.row
Methods in org.ejml.dense.row with type parameters of type FMatrixD1Modifier and TypeMethodDescriptionstatic <T extends FMatrixD1>
TCommonOps_FDRM.add(float alpha, T a, float beta, T b, T output) Performs the following operation:
c = α * a + β * b
cij = α * aij + β * bijstatic <T extends FMatrixD1>
TCommonOps_FDRM.add(float alpha, T a, T b, T output) Performs the following operation:
c = α * a + b
cij = α * aij + bijstatic <T extends FMatrixD1>
TCommonOps_FDRM.add(T a, float val, T output) Performs scalar addition:
c = a + val
cij = aij + valstatic <T extends FMatrixD1>
TCommonOps_FDRM.add(T a, float beta, T b, T output) Performs the following operation:
c = a + β * b
cij = aij + β * bijstatic <T extends FMatrixD1>
TCommonOps_FDRM.add(T a, T b, T output) Performs the following operation:
c = a + b
cij = aij + bijstatic <T extends FMatrixD1>
TCommonOps_FDRM.changeSign(T input, T output) Changes the sign of every element in the matrix.
outputij = -inputijstatic <T extends FMatrixD1>
TCommonOps_FDRM.divide(float alpha, T input, T output) Performs an element by element scalar division with the scalar on top.
bij = α/aijstatic <T extends FMatrixD1>
TCommonOps_FDRM.divide(T input, float alpha, T output) Performs an element by element scalar division with the scalar on botton.
bij = aij /αstatic <T extends FMatrixD1>
TCommonOps_FDRM.elementDiv(T A, T B, T output) Performs the an element by element division operation:
cij = aij / bijstatic <T extends FMatrixD1>
TCommonOps_FDRM.elementExp(T A, T output) Element-wise exp operation
cij = (float)Math.exp(aij)static <T extends FMatrixD1>
TCommonOps_FDRM.elementLog(T A, T output) Element-wise log operation
cij = (float)Math.log(aij)static <T extends FMatrixD1>
TCommonOps_FDRM.elementMult(T A, T B, T output) Performs the an element by element multiplication operation:
cij = aij * bijstatic <T extends FMatrixD1>
TCommonOps_FDRM.elementPower(float a, T B, T output) Element-wise power operation
cij = a ^ bijstatic <T extends FMatrixD1>
TCommonOps_FDRM.elementPower(T A, float b, T output) Element-wise power operation
cij = aij ^ bstatic <T extends FMatrixD1>
TCommonOps_FDRM.elementPower(T A, T B, T output) Element-wise power operation
cij = aij ^ bijstatic <T extends FMatrixD1>
TCommonOps_FDRM.subtract(float val, T a, T output) Performs matrix scalar subtraction:
c = val - a
cij = val - aijstatic <T extends FMatrixD1>
TCommonOps_FDRM.subtract(T a, float val, T output) Performs matrix scalar subtraction:
c = a - val
cij = aij - valstatic <T extends FMatrixD1>
TCommonOps_FDRM.subtract(T a, T b, T output) Performs the following subtraction operation:
c = a - b
cij = aij - bijMethods in org.ejml.dense.row with parameters of type FMatrixD1Modifier and TypeMethodDescriptionstatic voidPerforms absolute value of a matrix:
a = abs(a)
aij = abs(aij)static voidPerforms absolute value of a matrix:
c = abs(a)
cij = abs(aij)static voidPerforms an in-place scalar addition:
a = a + val
aij = aij + valstatic voidPerforms the following operation:
a = a + β * b
aij = aij + β * bijstatic voidPerforms the following operation:
a = a + b
aij = aij + bijstatic voidCommonOps_FDRM.changeSign(FMatrixD1 a) Changes the sign of every element in the matrix.
aij = -aijstatic voidConverts the real matrix into a complex matrix.static floatComputes the F norm of the difference between the two Matrices:
Sqrt{∑i=1:m ∑j=1:n ( aij - bij)2}static floatSpecializedOps_FDRM.diffNormF_fast(FMatrixD1 a, FMatrixD1 b) static floatSpecializedOps_FDRM.diffNormP1(FMatrixD1 a, FMatrixD1 b) Computes the p=1 p-norm of the difference between the two Matrices:
∑i=1:m ∑j=1:n | aij - bij|
where |x| is the absolute value of x.static voidPerforms an in-place element by element scalar division with the scalar on top.
aij = α/aijstatic voidPerforms an in-place element by element scalar division with the scalar on bottom.
aij = aij/αstatic floatComputes the dot product or inner product between two vectors.static floatSpecializedOps_FDRM.elementDiagonalMaxAbs(FMatrixD1 a) Returns the absolute value of the digonal element in the matrix that has the largest absolute value.
Max{ |aij| } for all i and jstatic voidCommonOps_FDRM.elementDiv(FMatrixD1 A, FMatrixD1 B) Performs the an element by element division operation:
aij = aij / bijstatic floatCommonOps_FDRM.elementMax(FMatrixD1 a) Returns the value of the element in the matrix that has the largest value.
Max{ aij } for all i and jstatic floatCommonOps_FDRM.elementMax(FMatrixD1 a, ElementLocation loc) Returns the value of the element in the matrix that has the largest value.
Max{ aij } for all i and jstatic floatCommonOps_FDRM.elementMaxAbs(FMatrixD1 a) Returns the absolute value of the element in the matrix that has the largest absolute value.
Max{ |aij| } for all i and jstatic floatCommonOps_FDRM.elementMaxAbs(FMatrixD1 a, ElementLocation loc) Returns the absolute value of the element in the matrix that has the largest absolute value.
Max{ |aij| } for all i and jstatic floatCommonOps_FDRM.elementMin(FMatrixD1 a) Returns the value of the element in the matrix that has the minimum value.
Min{ aij } for all i and jstatic floatCommonOps_FDRM.elementMin(FMatrixD1 a, ElementLocation loc) Returns the value of the element in the matrix that has the minimum value.
Min{ aij } for all i and jstatic floatCommonOps_FDRM.elementMinAbs(FMatrixD1 a) Returns the absolute value of the element in the matrix that has the smallest absolute value.
Min{ |aij| } for all i and jstatic floatCommonOps_FDRM.elementMinAbs(FMatrixD1 a, ElementLocation loc) Returns the absolute value of the element in the matrix that has the smallest absolute value.
Min{ |aij| } for all i and jstatic voidCommonOps_FDRM.elementMult(FMatrixD1 A, FMatrixD1 B) Performs the an element by element multiplication operation:
aij = aij * bijstatic floatCommonOps_FDRM.elementSum(FMatrixD1 mat) Computes the sum of all the elements in the matrix:
sum(i=1:m , j=1:n ; aij)static floatCommonOps_FDRM.elementSumAbs(FMatrixD1 mat) Computes the sum of the absolute value all the elements in the matrix:
sum(i=1:m , j=1:n ; |aij|)static floatSpecializedOps_FDRM.elementSumSq(FMatrixD1 m) Sums up the square of each element in the matrix.static floatNormOps_FDRM.fastElementP(FMatrixD1 A, float p) Same asNormOps_FDRM.elementP(org.ejml.data.FMatrix1Row, float)but runs faster by not mitigating overflow/underflow related problems.static floatThis implementation of the Frobenius norm is a straight forward implementation and can be susceptible for overflow/underflow issues.static voidSets every element in the matrix to the specified value.
aij = valuestatic voidRandomMatrices_FDRM.fillGaussian(FMatrixD1 mat, float mean, float stdev, Random rand) Sets each element in the matrix to a value drawn from an Gaussian distribution with the specified mean and standard deviationstatic voidRandomMatrices_FDRM.fillUniform(FMatrixD1 mat, float min, float max, Random rand) Sets each element in the matrix to a value drawn from an uniform distribution from 'min' to 'max' inclusive.static booleanChecks to see if any element in the matrix is NaN.static booleanMatrixFeatures_FDRM.hasUncountable(FMatrixD1 m) Checks to see if any element in the matrix is NaN of Infinite.static booleanChecks to see if each element in the two matrices are equal: aij == bijstatic booleanChecks to see if each element in the two matrices are within tolerance of each other: tol ≥ |aij - bij|.static booleanMatrixFeatures_FDRM.isIdentical(FMatrixD1 a, FMatrixD1 b, float tol) Checks to see if each corresponding element in the two matrices are within tolerance of each other or have the some symbolic meaning.static booleanMatrixFeatures_FDRM.isNegative(FMatrixD1 a, FMatrixD1 b, float tol) Checks to see if the two matrices are the negative of each other:
aij = -bijstatic booleanChecks to see if it is a square matrix.static booleanChecks to see all the elements in the matrix are zerosstatic floatComputes the Frobenius matrix norm:
normF = Sqrt{ ∑i=1:m ∑j=1:n { aij2} }static floatSpecializedOps_FDRM.qualityTriangular(FMatrixD1 T) Computes the quality of a triangular matrix, where the quality of a matrix is defined inLinearSolver.quality().static voidFMatrixComponent.renderMatrix(FMatrixD1 M, BufferedImage image, float maxValue) static voidPerforms an in-place element by element scalar multiplication.
aij = α*aijstatic voidPerforms an element by element scalar multiplication.
bij = α*aijvoidstatic voidCreates a window visually showing the matrix's state.static voidCommonOps_FDRM.subtractEquals(FMatrixD1 a, FMatrixD1 b) Performs the following subtraction operation:
a = a - b
aij = aij - bij -
Uses of FMatrixD1 in org.ejml.dense.row.misc
Methods in org.ejml.dense.row.misc with type parameters of type FMatrixD1Modifier and TypeMethodDescriptionstatic <T extends FMatrixD1>
TImplCommonOps_FDRM.elementDiv(T A, T B, T output) static <T extends FMatrixD1>
TImplCommonOps_FDRM.elementExp(T A, T output) static <T extends FMatrixD1>
TImplCommonOps_FDRM.elementLog(T A, T output) static <T extends FMatrixD1>
TImplCommonOps_FDRM.elementMult(T A, T B, T output) static <T extends FMatrixD1>
TImplCommonOps_FDRM.elementPower(float a, T B, T output) static <T extends FMatrixD1>
TImplCommonOps_FDRM.elementPower(T A, float b, T output) static <T extends FMatrixD1>
TImplCommonOps_FDRM.elementPower(T A, T B, T output) Methods in org.ejml.dense.row.misc with parameters of type FMatrixD1Modifier and TypeMethodDescriptionstatic voidImplCommonOps_FDRM.elementDiv(FMatrixD1 A, FMatrixD1 B) static floatImplCommonOps_FDRM.elementMax(FMatrixD1 a, @Nullable ElementLocation loc) static floatImplCommonOps_FDRM.elementMaxAbs(FMatrixD1 a, @Nullable ElementLocation loc) static floatImplCommonOps_FDRM.elementMin(FMatrixD1 a, @Nullable ElementLocation loc) static floatImplCommonOps_FDRM.elementMinAbs(FMatrixD1 a, @Nullable ElementLocation loc) static voidImplCommonOps_FDRM.elementMult(FMatrixD1 A, FMatrixD1 B) static floatImplCommonOps_FDRM.elementSum(FMatrixD1 mat) static floatImplCommonOps_FDRM.elementSumAbs(FMatrixD1 mat) -
Uses of FMatrixD1 in org.ejml.dense.row.mult
Methods in org.ejml.dense.row.mult with parameters of type FMatrixD1Modifier and TypeMethodDescriptionstatic voidVectorVectorMult_FDRM.addOuterProd(float gamma, FMatrixD1 x, FMatrixD1 y, FMatrix1Row A) Adds to A ∈ ℜ m × n the results of an outer product multiplication of the two vectors.static voidVectorVectorMult_FDRM.householder(float gamma, FMatrixD1 u, FMatrixD1 x, FMatrixD1 y) Multiplies a householder reflection against a vector:
y = (I + γ u uT)xstatic floatComputes the inner product of the two vectors.static floatVectorVectorMult_FDRM.innerProdA(FMatrixD1 x, FMatrixD1 A, FMatrixD1 y) return = xT*A*ystatic floatVectorVectorMult_FDRM.innerProdTranA(FMatrixD1 x, FMatrixD1 A, FMatrixD1 y) xTATystatic voidMatrixVectorMult_FDRM.mult(FMatrix1Row A, FMatrixD1 B, FMatrixD1 C) Performs a matrix vector multiply.
c = A * b
and
c = A * bT
ci = Sum{ j=1:n, aij * bj}
where A is a matrix, b is a column or transposed row vector, and c is a column vector.static voidMatrixVectorMult_FDRM.multAdd(FMatrix1Row A, FMatrixD1 B, FMatrixD1 C) Performs a matrix vector multiply.
C = C + A * B
or
C = C + A * BT
ci = Sum{ j=1:n, ci + aij * bj}
where A is a matrix, B is a column or transposed row vector, and C is a column vector.static voidMatrixVectorMult_FDRM.multAddTransA_reorder(FMatrix1Row A, FMatrixD1 B, FMatrixD1 C) An alternative implementation ofMatrixVectorMult_FDRM.multAddTransA_small(org.ejml.data.FMatrix1Row, org.ejml.data.FMatrixD1, org.ejml.data.FMatrixD1)that performs well on large matrices.static voidMatrixVectorMult_FDRM.multAddTransA_small(FMatrix1Row A, FMatrixD1 B, FMatrixD1 C) Performs a matrix vector multiply.
C = C + AT * B
or
C = CT + AT * BT
ci = Sum{ j=1:n, ci + aji * bj}
where A is a matrix, B is a column or transposed row vector, and C is a column vector.static voidMatrixVectorMult_FDRM.multTransA_reorder(FMatrix1Row A, FMatrixD1 B, FMatrixD1 C) An alternative implementation ofMatrixVectorMult_FDRM.multTransA_small(org.ejml.data.FMatrix1Row, org.ejml.data.FMatrixD1, org.ejml.data.FMatrixD1)that performs well on large matrices.static voidMatrixVectorMult_FDRM.multTransA_small(FMatrix1Row A, FMatrixD1 B, FMatrixD1 C) Performs a matrix vector multiply.
C = AT * B
where B is a column vector.
or
C = AT * BT
where B is a row vector.static voidVectorVectorMult_FDRM.outerProd(FMatrixD1 x, FMatrixD1 y, FMatrix1Row A) Sets A ∈ ℜ m × n equal to an outer product multiplication of the two vectors. -
Uses of FMatrixD1 in org.ejml.masks
Methods in org.ejml.masks with parameters of type FMatrixD1